1. Al-Sultan S, Al-Doori M M, Al-Bayatti A H, et al. A comprehensive survey on vehicular Ad hoc network. Journal of Network and Computer Applications, 2014, 37: 380-392
2. IEEE P802.11p. Draft amendment to standard for information technology—telecommunications and information exchange between systems—LAN/MAN specific requirements—Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: wireless access in vehicular environments (WAVE). 2010
3. IEEE Std 1609.4—2010. IEEE standard for wireless access in vehicular environments (WAVE)—Multi-channel operation. 2010
4. Wu Q, Zheng J. Performance modeling of the IEEE 802.11p EDCA mechanism for VANET. Proceedings of the 2014 IEEE Global Communications Conference (GLOBECOM’14), Dec 8-12, 2014, Austin, TX, USA. Piscataway, NJ, USA: IEEE, 2014: 57-63
5. Kolte S R, Madankar M S. Adaptive congestion control for transmission of safety messages in VANET. Proceedings of the 2014 International Conference for Convergence of Technology (I2CT’14), Apr 6-8, 2014, Pune, India. Piscataway, NJ, USA: IEEE, 2014: 5p
6. Campolo C, Molinaro A, Vinel A. Understanding the performance of short-lived control broadcast packets in 802.11p/WAVE vehicular networks. Proceedings of the 2011 IEEE Vehicular Networking Conference (VNC’11), Nov 14-16, 2011, Amsterdam, Netherlands. Piscataway, NJ, USA: IEEE, 2011: 102-108
7. Ghafoor K Z, Lloret J, Bakar K A, et al. Beaconing approaches in vehicular Ad hoc networks: a survey. Wireless Personal Communications, 2013, 73(3): 885-912
8. Bansal G, Kenney J B. Controlling congestion in safety-message transmissions: a philosophy for vehicular DSRC systems. IEEE Vehicular Technology Magazine, 2013, 8(4): 20-26
9. Zemouri S, Djahel S, Murphy J. Smart adaptation of beacons transmission rate and power for enhanced vehicular awareness in VANETs. Proceedings of the 17th IEEE International Conference on Intelligent Transportation Systems (ITSC’14), Oct 8-11, 2014, Qingdao, China. Piscataway, NJ, USA: IEEE, 2014: 739-746
10. Park Y, Kim H. Application-level frequency control of periodic safety messages in the IEEE WAVE. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1854-1862
11. Bansal G, Kenney J B, Rohrs C E. LIMERIC: a linear adaptive message rate algorithm for DSRC congestion control. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4182-4197
12. Tielert T, Jiang D, Hartenstein H, et al. Joint power/rate congestion control optimizing packet reception in vehicle safety communications. Proceeding of the 10th ACM International Workshop on Vehicular Inter-networking, Systems, and Applications (VANET’13), Jun 25-28, 2013, Taipei, China. New York, NY, USA: ACM, 2013: 51-60
13. ETSI TS 102 687 V1.1.1. Intelligent transport systems (ITS), decentralized congestion control mechanisms for intelligent transport systems operating in the 5 GHz range, Access layer part. 2011
14. Kim B, Kang I, Kim H. Resolving the unfairness of distributed rate control in the IEEE WAVE safety messaging. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2284-2297
15. Yao Y, Rao L, Liu X. Performance and reliability analysis of IEEE 802.11p safety communication in a highway environment. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4198-4212
16. Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535-547
17. Ma X M, Chen X B. Performance analysis of IEEE 802.11 broadcast scheme in Ad hoc wireless LANs. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3757-3768
18. Yang Q, Zheng J, Shen L F. Modeling and performance analysis of periodic broadcast in vehicular Ad hoc networks. Proceedings of the 2011 IEEE Global Telecommunications Conference (GLOBECOM’11), Dec 5-9, 2011, Houston, TX, USA. Piscataway, NJ, USA: IEEE, 2011: 5p
|